Gut Churning

By Alla Katsnelson Gut Churning The discovery of an intestinal stem cell marker fuels an ongoing debate over the cells' location and properties. GFP-labeled Lgr5-positive cells in the crypt base of the mouse intestine Courtesy of Nick Barker and Hugo Snippert Mammalian intestinal epithelium is one of the most swiftly self-renewing tissues in the body, turning over completely every 3 to 5 days. Because of the absence

Written byAlla Katsnelson
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Mammalian intestinal epithelium is one of the most swiftly self-renewing tissues in the body, turning over completely every 3 to 5 days. Because of the absence of reliable stem cell markers, however, researchers have argued for decades about the identity and location of the stem cells that fuel this growth capacity.

In the intestinal epithelium, cells proliferate in glandular pockets termed the crypts of Lieberkühn. In the 1970s, two competing theories emerged for where in the crypt these all-important, self-renewing cells abide. The predominant idea, put forth by Chris Potten at the Paterson Institute for Cancer Research in Manchester, United Kingdom, and a cofounder of Epistem, an epithelial stem cell company, placed the stem cells in a location about halfway up the crypt (termed position +4).1 Lesser known work from the McGill University lab of Charles Philippe Leblond, who died in 2007, proposed that crypt base columnar (CBC) cells, at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies