Helping bacteria use magnets

Researchers find structures and gene that enable magnetobacteria to navigate Earth's magnetic field

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Scientists in Germany have identified cytoskeletal structures and a gene that anchor magnetic crystals inside magnetobacteria, organisms that navigate Earth's magnetic field. The findings, which appeared online Sunday in Nature, could help elucidate other poorly understood biomineralization processes, such as those producing magnetic nanoparticles in higher organisms, senior author Dirk Schüler at the Max Planck Institute for Marine Microbiology in Bremen, Germany, told The Scientist.

Magnetobacteria employ organelles known as magnetosomes, magnetite crystals enclosed in the membrane and arranged in chains that behave like compass needles. Higher organisms such as salmon and homing pigeons also possess magnetosome chains resembling those in bacteria. Recently, Schüler and his colleagues identified a cluster of at least 25 -- and possibly up to 100 -- genes in magnetobacterium Magnetospirillum gryphiswaldense apparently involved in magnetite biomineralization and magnetosome formation.

During the current study, the researchers deleted mamJ, which encodes for a protein consisting of many ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Charles Choi

    This person does not yet have a bio.
Share
Image of people clinking glasses with various alcoholic beverages at a table.
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Scientist at lab bench holding a pipette with a microscope and glassware in the foreground.

Improving Drug Analysis with Supercritical Fluid Chromatography

Shimadzu logo

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits