Hot-Vent Microbes: Looking Backward In Evolution For Future Uses

They live--thrive, even--in boiling water! They feed on sulfur or hydrogen. They could be from one of the moons of Jupiter. In fact, their existence here on Earth has led scientists to realize that planets they hitherto assumed to be lifeless might support life. These thermophilic, or heat- loving, microbes--Archaea--are attracting a small but growing cadre of researchers and serious research funding from the United States governmen

Written byMyrna Watanabe
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

They live--thrive, even--in boiling water! They feed on sulfur or hydrogen. They could be from one of the moons of Jupiter. In fact, their existence here on Earth has led scientists to realize that planets they hitherto assumed to be lifeless might support life. These thermophilic, or heat- loving, microbes--Archaea--are attracting a small but growing cadre of researchers and serious research funding from the United States government.

THE ARCHAEAL DOMAIN Author: MYRNA E. WATANABE The discovery in the 1970s--and subsequent molecular studies--of Archaea (also known as archaebacteria) led University of Illinois microbiologist Carl Woese and colleagues to propose a total overhaul of how organisms should be classified (C.R. Woese et al., Proceedings of the National Academy of Sciences, 87:4576-9, 1990). The archaebacteria were found, on a molecular level, to be at least as different from bacteria as they are from eukaryotes (life-forms with distinct nuclei). Furthermore, the differences between the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery