How the Venus Flytrap Captures Its Prey

Scientists used CRISPR-Cas9 for the first time in a carnivorous plant to prove the role of two ion channels in closing the Venus flytrap’s trap.

| 4 min read
Venus flytrap plants grow in the lab, trigger hairs at the ready.

The jaws of the Venus flytrap are open, waiting for prey to touch the tiny trigger hairs on the leaf surface.

Carl Procko

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

An insect lands on the open leaves of a Venus flytrap plant, drawn to an appealing scent. It noses around and accidentally brushes one of the trap’s trigger hairs. An action potential shoots across the leaf blade. The insect keeps moving and bends another trigger hair, propagating a second action potential; suddenly, the leaves snap shut, trapping the insect, enveloping it in digestive juices, and absorbing the bug’s rich nutrients.

How these two light touches trigger abrupt shutting of the leaves has been hypothesized, but never proven. Now, in a new study published in Current Biology, a team of researchers knocked out two ion channels, making it harder to produce action potentials and proving the channels’ importance in leaf closing.1

“The paper is a very big technical advance,” said plant biophysicist Rainer Hedrich at the University of Wurzburg who was not involved in the study. “It is possible to knock out genes in an excitable plant and test hypotheses.”

Carl Procko sits with pallets of Venus flytrap plants.
Carl Procko holds a Venus flytrap plant in the greenhouse that stores various transgenic and wild type plants
Carl Procko

Carnivorous plants and their quick movements have fascinated scientists for centuries. In the 1870s, Darwin and his colleagues discussed how electrical currents played a role in leaf closing.2,3,4 More recently, scientists found mechanosensitive ion channels FLYCATCHER1 (FLYC1) and FLYCATCHER2 (FLYC2) expressed in trigger hairs that may associate with touch sensitivity.5 Even though the Venus flytrap’s genome is sequenced, no targeted mutations of ion channel genes have been made to conclusively prove their roles in leaf closing.

So, plant biologists Carl Procko and Joanne Chory at the Salk Institute decided to use CRISPR-Cas9 to mutate FLYC1 and FLYC2 to investigate their functions. Scientists had hypothesized that an insect’s touch causes deformation of the trigger hair’s sensory cell membrane, which causes the opening of these ion channels and membrane depolarization and electrical signaling.

Procko grew Venus flytrap plants in tissue culture and then fired gold particles covered with plasmid DNA containing components of the CRISPR-Cas9 system into the cells. In the plasmid, the researchers also included a gene for a fluorescent protein to identify the plasmid-bearing tissue. The team propagated the genetically transformed cells and eventually grew a new plant. The plant was mosaic; it carried the plasmid DNA in some leaf arms, while others were wild type.

Procko chose leaflets that were fully transgenic (and fluorescent) and clonally separated them in tissue culture. To determine whether the leaves were single or double mutants, Procko used PCR-based Sanger sequencing and genotyping. He chose single mutants for some experiments and double mutants for others. He then planted the plants in soil and continued to grow them in a greenhouse.

Next, he triggered the double mutant plants with a touch from thin, fire-polished glass rod mounted on a micromanipulator; they closed just as often and as quickly as the wild type plants. “You get a plant that looks normal,” said Procko. “You sit there, and you scratch your head a bit.” Procko thought that perhaps the defect was smaller than could be detected using the relatively large touch of a pipette and decided to search for another more subtle quantitative assay.

Wen Mai Wong applies an ultrasound stimulus to a Venus flytrap leaf.
Wen Mai Wong, a scientist in Sreekanth Chalasani's lab, uses the ultrasound transducer to test a Venus flytrap leaf for its action potential.
Carl Procko and Wen Mai Wong

He collaborated with molecular neurobiologist Sreekanth Chalasani, also at the Salk Institute, who works with ultrasound. When the team tested the plants with a new, more sensitive assay using ultrasound waves to stimulate the trigger hair, the FLYC1-FLYC2 double mutants showed a significant defect: mutated plants required a greater ultrasound pressure to induce the trap closure than wild type plants. The team noted that single FLYC1 mutants stimulated with ultrasound closed just as well as the wild type plants. Procko believes that brute force mechanical stimulation with the glass rod may be so large that it could act through different mechanosensitive ion channels in the trigger hair.

“The next step now is to start looking at these other mechanosensitive channels that are within the trigger hair,” said Procko. “We can start to mutate some of these others and put them in various combinations to see exactly which mechanosensitive channels are most important or if they’re all required together to get that very exquisite touch sensitivity of the trigger hair.” Hedrich’s team is currently working to knock out a calcium channel gene hyperosmolality-gated calcium-permeable channel (OSCA).

Procko acknowledged that he didn’t know exactly how the ultrasound assay relates to touch, which limits the study. “It’s a mechanical stimulus. We like to think it’s related to touch, but it could alternatively be applying that stimulus directly to the sensory membranes and altering the membranes. So, this is still a little bit of a question mark,” said Procko.

Keywords

Meet the Author

  • Rachael Moeller Gorman

    Rachael freelances for both scientific and lay publications, and loves telling the stories behind the science.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio