H.T. Gene Knockouts

Not long ago, scientists conducted loss-of-function experiments in mammals mostly by using antisense, dominant negative, or knockout technologies: Bind up the messenger RNA, swamp out the protein, or interrupt the gene, and then examine the phenotype. But the former two are unreliable, and tend to be inefficient even when they do work; the latter is difficult to achieve for both copies of a gene in a somatic cell. With such blunt instruments, researchers have been painstakingly disabling one ge

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

With such blunt instruments, researchers have been painstakingly disabling one gene at a time to gather information about what processes its product might be involved in. "There has been no concept of high-throughput gene knockouts in any mammalian system up to now," says David Beach, president of Cambridge, Mass.-based Genetica Inc. But Genetica is introducing that concept to the world of drug discovery with the help of a relatively new technology, RNA interference (RNAi).

First described in worms in 1998,1 RNAi operates in plants, fungi, flies, and mammals. An enzyme complex recognizes double-stranded RNA (dsRNA), and cuts it into roughly 22-nucleotide-long fragments. These fragments, termed siRNAs for "small interfering RNAs," then act as templates for the RNAi-inducing silencing complex to destroy the homologous message, thus specifically suppressing its expression. This form of RNAi is termed "post-transcriptional gene silencing," or PTGS; other forms are also thought to operate at the genomic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Josh Roberts

    This person does not yet have a bio.

Published In

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis