H.T. Gene Knockouts

Not long ago, scientists conducted loss-of-function experiments in mammals mostly by using antisense, dominant negative, or knockout technologies: Bind up the messenger RNA, swamp out the protein, or interrupt the gene, and then examine the phenotype. But the former two are unreliable, and tend to be inefficient even when they do work; the latter is difficult to achieve for both copies of a gene in a somatic cell. With such blunt instruments, researchers have been painstakingly disabling one ge

Written byJosh Roberts
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

With such blunt instruments, researchers have been painstakingly disabling one gene at a time to gather information about what processes its product might be involved in. "There has been no concept of high-throughput gene knockouts in any mammalian system up to now," says David Beach, president of Cambridge, Mass.-based Genetica Inc. But Genetica is introducing that concept to the world of drug discovery with the help of a relatively new technology, RNA interference (RNAi).

First described in worms in 1998,1 RNAi operates in plants, fungi, flies, and mammals. An enzyme complex recognizes double-stranded RNA (dsRNA), and cuts it into roughly 22-nucleotide-long fragments. These fragments, termed siRNAs for "small interfering RNAs," then act as templates for the RNAi-inducing silencing complex to destroy the homologous message, thus specifically suppressing its expression. This form of RNAi is termed "post-transcriptional gene silencing," or PTGS; other forms are also thought to operate at the genomic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research