Impure Genius

By Karen Hopkin Impure Genius Lewis Cantley has made a career of turning chemical contaminants into groundbreaking discoveries—including novel lipids, potent inhibitors, and kinases involved in cancer. LEWIS C. CANTLEY Professor of Systems Biology, Harvard Medical School Chief, Division of Signal Transduction, Director of Cancer Research Beth Israel Deaconess Medical Center F1000 Section Head: Cell Signaling Porter Gifford I didn’t set out to

Written byKaren Hopkin
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

I didn’t set out to discover a new signaling pathway,” says Lewis Cantley of his identification of phosphatidylinositol (PI) 3-kinase and its targets and activators. He was studying how insulin and growth factors alter ion transport across cell membranes. And he suspected it had something to do with phosphorylated lipids. Since the 1950s, investigators had observed that exposure to hormones and growth factors boosts the phosphorylation of PI in cell membranes. And Cantley found that surrounding the ion pump Na,K-ATPase with phosphorylated PIs in an artificial membrane enhanced its activity. So he set out to isolate the enzyme that phosphorylates this lipid in vivo.

A 1983 paper from Harvard University’s Ray Erikson caught Cantley’s eye. In it, Erikson noted that a frozen-and-thawed preparation of the oncoprotein v-Src was able to phosphorylate the glycerol in which it had been stored. “And I thought, well, inositol looks like two glycerol molecules glued ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery