Impure Genius

By Karen Hopkin Impure Genius Lewis Cantley has made a career of turning chemical contaminants into groundbreaking discoveries—including novel lipids, potent inhibitors, and kinases involved in cancer. LEWIS C. CANTLEY Professor of Systems Biology, Harvard Medical School Chief, Division of Signal Transduction, Director of Cancer Research Beth Israel Deaconess Medical Center F1000 Section Head: Cell Signaling Porter Gifford I didn’t set out to

Written byKaren Hopkin
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

I didn’t set out to discover a new signaling pathway,” says Lewis Cantley of his identification of phosphatidylinositol (PI) 3-kinase and its targets and activators. He was studying how insulin and growth factors alter ion transport across cell membranes. And he suspected it had something to do with phosphorylated lipids. Since the 1950s, investigators had observed that exposure to hormones and growth factors boosts the phosphorylation of PI in cell membranes. And Cantley found that surrounding the ion pump Na,K-ATPase with phosphorylated PIs in an artificial membrane enhanced its activity. So he set out to isolate the enzyme that phosphorylates this lipid in vivo.

A 1983 paper from Harvard University’s Ray Erikson caught Cantley’s eye. In it, Erikson noted that a frozen-and-thawed preparation of the oncoprotein v-Src was able to phosphorylate the glycerol in which it had been stored. “And I thought, well, inositol looks like two glycerol molecules glued ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform