Infographic: Phage Display Allows Rapid Screening of Millions of Peptides

A viral protein expression method links proteins and their coding instructions, enabling easier target identification for downstream analysis.

Written byShelby Bradford, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PHAGE DISPLAY LIBRARY GENERATION

A 3-step summary of a peptide library. DNA segments are inserted into plasmids and transformed into bacteria. With the addition of modified bacteriophages, the plasmids are packaged into functional bacteriophages where they express a protein of interest from the plasmid. Together, these unique bacteriophages constitute a phage library.
DESIGNED BY ERIN LEMIEUX


Scientists insert variable DNA sequences coding for their proteins of interest into plasmids that carry a phage coat protein gene, an antibiotic resistance gene, and a packaging signal. Then they transform the plasmids into a bacterial vector and infect it with a helper phage that supplies the other necessary viral proteins. This generates the phage library, where each virion expresses versions of the protein of interest on its coat protein and carries its genetic sequence in its genome.

AFFINITY PURIFICATION

A 3-step summary of affinity purification. The phage library is introduced to a target ligand that is presented on a solid surface. Phages expressing a protein that recognize this ligand bind and are retained in a subsequent wash step that removes unbound phages. Bound phages are eluted and kept.
DESIGNED BY ERIN LEMIEUX


In the next step, researchers isolate the phages expressing surface proteins using a surface ligand binding assay. The final eluted phages may bear a mix of different surface protein epitopes.

PHAGE AMPLIFICATION

A 3-step summary of phage amplification. The eluted phages are introduced to bacteria and the modified helper phage to propagate more plasmid-containing bacteriophages. These are re-introduced to the surface-bound ligand for additional assessment of binding capacity. Bound phages are again retained and eluted.
DESIGNED BY ERIN LEMIEUX


In the amplification step, researchers propagate the eluted phages in a bacterial culture, and may run additional rounds of affinity purification.

CLONE ISOLATION

A 2-step summary of clone isolation. Eluted phages are eventually retained and used to infect bacteria without the aid of the helper phages to propagate them. The plasmid-containing bacteria are cultured on agar plates to select for plasmid-containing colonies. The plasmids are isolated from some of these colonies and can be used for sequence analysis, monoclonal antibody production, or other protein analyses.
DESIGNED BY ERIN LEMIEUX


Researchers infect bacteria with the selected phages and culture them on plates containing antibiotics. In the final step, they pick resistant colonies to isolate the plasmids, which are then sequenced and cloned into the desired protein production vectors for various applications.

Read the full story.

Related Topics

Meet the Author

  • Shelby Bradford, PhD

    Shelby is an Assistant Editor at The Scientist. She earned her PhD in immunology and microbial pathogenesis from West Virginia University, where she studied neonatal responses to vaccination. She completed an AAAS Mass Media Fellowship at StateImpact Pennsylvania, and her writing has also appeared in Massive Science. Shelby participated in the 2023 flagship ComSciCon and volunteered with science outreach programs and Carnegie Science Center during graduate school. 

    View Full Profile

Published In

December 2023 issue cover
Winter 2023

Ephemeral Life

Recent advances in modeling the human placenta may inform placental disorders like preeclampsia

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform