Interfering with Cancer

By Katherine Hyde and Paul Liu Interfering with Cancer MicroRNAs may drive the development of leukemia. Acute myeloid leukemia (AML) is a cancer of the blood-cell producing bone marrow with several subtypes, and is usually fatal within months, or even weeks, if left untreated. It is now becoming clear, however, that dysregulation of microRNAs (miRs) is not simply a side effect of the cancer; rather, it could play a mechanistic role in the development of leukemia.

Written byKatherine Hyde and Paul Liu
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Acute myeloid leukemia (AML) is a cancer of the blood-cell producing bone marrow with several subtypes, and is usually fatal within months, or even weeks, if left untreated. It is now becoming clear, however, that dysregulation of microRNAs (miRs) is not simply a side effect of the cancer; rather, it could play a mechanistic role in the development of leukemia.

AML subtypes are classified according to the kind of cells in which the cancer originated, as well as the presence of several characteristic chromosomal alterations. Fusion proteins, for example, are the product of some of these chromosomal translocations and can be oncogenic. Recent studies have suggested that AML subtypes might also be characterized by their miR expression patterns. MicroRNAs are short (18 to 22 nucleotides), noncoding RNAs that regulate gene expression by base-pairing with the 3′ untranslated region of a target mRNA and instigating its degradation. Researchers have proposed that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies