Kits to Dye For: A Profile of Sequencing Kits for Automated DNA Sequencers

Date: November 10, 1997 Chart 1 In the long series of events inherent in automated DNA sequencing, cranking out DNA labeled with fluorescent tags is, of course, the most important element of a successful procedure. Without properly labeled sequence ladders to analyze, those expensive, automated DNA sequencers have little to do. So to keep them busy, LabConsumer checked out fluorescent automated DNA sequencing kits from eight manufacturers. The kits profiled exploit two methods for labeling se

Written byMichael Brush
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Date: November 10, 1997 Chart 1
DNA lanes In the long series of events inherent in automated DNA sequencing, cranking out DNA labeled with fluorescent tags is, of course, the most important element of a successful procedure. Without properly labeled sequence ladders to analyze, those expensive, automated DNA sequencers have little to do. So to keep them busy, LabConsumer checked out fluorescent automated DNA sequencing kits from eight manufacturers.

The kits profiled exploit two methods for labeling sequencing products: the incorporation of fluorescent dye-labeled primers and the incorporation of dye-labeled dideoxynucleotides (ddNTPs), or dye terminators. The use of dye-labeled primers is the most common method because the modified forms of Taq and the other novel polymerases used in these kits discriminate against dye-labeled ddNTPs and are unable to efficiently incorporate them into the reaction products. Expressly engineered polymerases, on the other hand, such as ABI's AmpliTaq DNA Polymerase, FS and Amersham's Thermo ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies