Long Life and Forkhead Deacetylation

Race to understand mammalian longevity marries SIRT1 to FOXO

Written byDavid Secko
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

The idea that caloric restriction slows the aging process for some organisms is nearly as well accepted as the inevitability of aging. In yeast and worms, life extension due to calorie restriction involves the protein deacetylase Sir2. In 2001, Leonard Guarente's lab at the Massachusetts Institute of Technology showed that the histone deacetylase Sir2 needs the forkhead family transcription factor Daf-16 to extend worm life. It was a big clue, says Guarente; someone just needed to put the pieces together in mammals.

In the Hot Papers featured here, several labs made a convincing case that SIRT1 regulates forkhead transcription factors (FOXOs) in mammals. Guarente's group showed that SIRT1 directly deacetylates FOXO3, resulting in the downregulation of apoptotic genes.1 Michael Greenberg's group at Children's Hospital in Boston showed that SIRT1 binds FOXO3 and deacetylates it, resulting in the activation of DNA-repair genes.2

The seemingly opposite results on gene expression suggested an ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH