Making sense of antisense

DNA microarray analysis has been used to define gene-expression profiles following treatment with antisense oligonucleotides.

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The specificity of antisense approaches is much debated and has hampered their development for clinical therapeutics. In the August 14 Proceedings of the National Academy of Sciences, Yee Cho and colleagues at the National Institutes of Health, Bethesda, MD, report the use of DNA microarrays to resolve aspects of the mechanism of antisense action (Proc Natl Acad Sci USA 2001, 98:9819-9823).

They investigated the effects of antisense oligonucleotides targeting the regulatory RIα subunit of cAMP-dependent protein kinase (PKA). They treated human PC3 prostate cancer cells with antisense phosphorothioate oligonucleotides (PS-ODNs) or with 2'-O-methyl RNA/DNA hybrid ODNs and examined changes in the expression profiles of over 2,300 genes. Expression of about 10% of the genes was altered by antisense treatment.

The results were very similar whether exogenous ODNs or endogenous antisense gene overexpression were used. RIα antisense treatment affected a specific subset of genes, causing decreased expression of proliferation-related gene clusters, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH