Meiosis Models Face Tough Scrutiny

A TALE OF TWO MODELS:Courtesy of Douglas K. Bishop and Denise Zickler, © Elsevier ScienceThe double-strand-break repair model (A) posits that during meiotic prophase I, crossovers (COs) and noncrossovers (NCOs) begin with a double-strand break (DSB) of a DNA helix. Cleavage of a structure known as the Holliday junction (HJ) ultimately generates both COs and NCOs. A newer model (B) proposes that COs still arise from HJs (right) but that NCOs come from a pathway called synthesis-dependent str

Written byDouglas Steinberg
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Courtesy of Douglas K. Bishop and Denise Zickler, © Elsevier Science

The double-strand-break repair model (A) posits that during meiotic prophase I, crossovers (COs) and noncrossovers (NCOs) begin with a double-strand break (DSB) of a DNA helix. Cleavage of a structure known as the Holliday junction (HJ) ultimately generates both COs and NCOs. A newer model (B) proposes that COs still arise from HJs (right) but that NCOs come from a pathway called synthesis-dependent strand annealing (left) that does not involve HJs. (Reprinted from Cell, 117:9–15, 2004.)

Thousands of geneticists owe their livelihoods to meiotic recombination, that diversity-promoting process during egg and sperm development when homologous chromosomes from Mom and Dad swap pieces. But recombination is so dauntingly complex that only a few geneticists have dared to propose models describing its underlying mechanics. For decades, cytology and genetic analysis provided data to test these hypotheses. Now molecular and biochemical tools ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies