Methylation: Gene Expression at the Right Place and Right Time

Courtesy of Richard Roberts, New England BiolabsModel methylation reaction: Cytosine nucleotide (red) is flipped out of the DNA double helix by a methyltransferase (white), so it can be methylated. The end product after the methyl group has been transferred to the DNA is pictured in green. A tenuous link between DNA methylation and development has existed for several years. Now findings substantiate the connection. Researchers have found the first human diseases caused by defects in the DNA meth

Written byNadia Halim
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Courtesy of Richard Roberts, New England Biolabs

Model methylation reaction: Cytosine nucleotide (red) is flipped out of the DNA double helix by a methyltransferase (white), so it can be methylated. The end product after the methyl group has been transferred to the DNA is pictured in green.
A tenuous link between DNA methylation and development has existed for several years. Now findings substantiate the connection. Researchers have found the first human diseases caused by defects in the DNA methylation machinery.

The term methylation refers to the addition of a methyl group to the cyclic carbon 5 of a cytosine nucleotide. A family of conserved DNA methyltransferases catalyzes this reaction. Basically, the methyl group tags a gene so it is turned off, and an unnecessary protein product is not produced in a particular cell. For instance, one of the two X chromosomes in female mammals is inactivated by methylation.

A collaboration between ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies