Microfluidics

Jerry Radich is looking for a needle in a haystack, and he's counting on a microfluidics device to help him find it.

Written byMegan Stephan
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

Microfluidics Milestones

Jerry Radich is looking for a needle in a haystack, and he's counting on a microfluidics device to help him find it. Every year, a small fraction (about 4%) of leukemia patients develop resistance to Gleevec and related drugs. Radich and his group at the Fred Hutchinson Cancer Research Center in Seattle would like to detect resistance-causing mutations at their earliest stages, before the drugs stop working and patients stop getting better. This means detecting a singly mutated mRNA molecule against a background of 10,000 or more wild-type copies, a detection level virtually impossible using conventional methods.

So Radich is testing a so-called lab-on-a-chip, or microfluidic device made by Fluidigm of South San Francisco, Calif., containing hundreds of tiny channels that intersect to form thousands of nano-liter-scale reaction chambers. Partitioning a blood sample into these tiny chambers separates RNA molecules into small groups of one to 10 molecules, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH