Mining Bacterial Small Molecules

By L. Caetano M. Antunes, Julian E. Davies and B. Brett Finlay Mining Bacterial Small Molecules As much as rainforests or deep-sea vents, the human gut holds rich stores of microbial chemicals that should be mined for their pharmacological potential. animate4.com ltd. / Photo Researchers, Inc. Companies spend huge resources going to the far reaches of the Earth to search for the next blockbuster. But we need look no further than our own intestines, which are p

Written byL. Caetano M. Antunes, Julian E. Davies, and B. Brett Finlay
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Companies spend huge resources going to the far reaches of the Earth to search for the next blockbuster. But we need look no further than our own intestines, which are populated with thousands of bacterial species that are constantly producing and releasing small, bioactive molecules.

Small molecules—the bread and butter of pharmaceutical companies—are compounds of low molecular weight (under 3,000 daltons) and diverse chemical composition. Examples of such molecules are the steroid and small-peptide hormones of higher organisms, with a molecular weight around 300 daltons, which have many important biological functions. The term hormone (from the Greek: excite, arouse) was coined in 1905 by British physiologist1 Ernest Starling to describe the chemical messengers produced in an organ or gland of the body that travel to distant organs to exert their physiological effects. In humans, the critical functions of small-molecule hormones include modulation of the immune system, the development of sexual ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies