Networked genes

By Richard GrantNetworked genes From M. Costanzo et al., “The genetic landscape of a cell,” Science, 327:425–31, 2010. reprinted with permission from aaas.The paper M. Costanzo et al., “The genetic landscape of a cell,” Science, 327:425–31, 2010.http://bit.ly/genlandscape The finding Knocking out a single gene in yeast often has little effect; yeast can survive with only about 20% of their 6,000 genes intact and researcher

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The paper

M. Costanzo et al., “The genetic landscape of a cell,” Science, 327:425–31, 2010. http://bit.ly/genlandscape

The finding

Knocking out a single gene in yeast often has little effect; yeast can survive with only about 20% of their 6,000 genes intact and researchers often need to knock out a second gene at random to determine function. Now, a network map of over 5 million such double mutants makes it possible to predict the function of 75% of the yeast genome.

The challenge

To measure the effects of double mutants, the researchers, coordinated by Charles Boone at the University of Toronto, looked at the size of yeast colonies. Very small colonies indicated that the genes were closely related or essential to the same pathway, while slightly larger colonies signified that one mutant negated the effect of the other. Simple though it sounds, it took a couple of years just to figure ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Richard Grant

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo