New Laser Polarimetric Technique Has Broad Applications

A new polarimetric technique that uses a narrow, collimated beam of laser light to differentiate between mirror image forms of asymmetric molecules has improved the sensitivity of classic devices and has ex- panded applications to solve a wide variety of problems in areas ranging from clinical medicine and pharmaceutical testing to research and development connected with commercial products. Polarimetric analysis is based on the principle that asymmetric molecules are optically active—

Written byCarol Gan
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

A new polarimetric technique that uses a narrow, collimated beam of laser light to differentiate between mirror image forms of asymmetric molecules has improved the sensitivity of classic devices and has ex- panded applications to solve a wide variety of problems in areas ranging from clinical medicine and pharmaceutical testing to research and development connected with commercial products.

Polarimetric analysis is based on the principle that asymmetric molecules are optically active—that is, they rotate the plane of polarized light in a clockwise (+) or counterclockwise (-) direction, depending on their arrangement of atoms. Many important molecules, such as sugars, pharmaceutical drugs, proteins, steroids, and organic compounds, exist in these two forms. Differentiating between them is important because very often only one stereoisomer is metabolically or chemically active.

All polarimeters operate by passing a beam of monochromatic, polarized light through a cell containing the sample and detecting the subsequent angular change, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH