Ape Fossils Shed New Light on Evolution of Bipedalism

The 12-million-year-old bones of a previously unknown species named Danuvius guggenmosi challenge the prevailing view about when and where our ancestors first started walking upright.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Although some other extant great apes, such as chimpanzees (Pan troglodytes), can walk upright, Homo sapiens is the only species that regularly walks on two legs.
© ISTOCK.COM, CHERYL RAMALHO

Researchers in Germany have discovered the fossilized bones of a previously unknown species of ape that appeared to walk upright, according to a study published yesterday (November 6) in Nature. The bones, which the team dated to nearly 12 million years ago, suggest that bipedalism might have evolved in a common ancestor of humans and other great apes living in Europe, and not in more-recent human ancestors in Africa as many researchers had assumed.

The finding “changes the why, when and where of evolution of bipedality dramatically,” study coauthor Madelaine Böhme, a paleobiologist at the University of Tübingen in Germany, tells Reuters.

There are many theories about the evolution of bipedalism, but many assumed that upright walking appeared in our ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform