Non-coding DNA adapts

Drosophila non-coding DNA exhibits both negative and positive selection

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Much of the "junk" DNA in Drosophila shows signs of either negative or positive selection, according to a study in this week's Nature. An analysis by Peter Andolfatto of the University of California, San Diego, reveals that around half of non-coding Drosophila DNA is evolutionarily constrained and that much of the remaining divergent DNA has undergone adaptive evolution. Both types of selection show that "this non-coding DNA actually has functional importance to the organism," said Andolfatto.

"We've known for a while that it was possible you'd see constraint—essentially, negative selection—on non-coding regions," said Gerald Wyckoff of the University of Missouri-Kansas City, who was not involved in the study, "but his methodology makes it so clear that this type of selection is abundant."

During the study, Andolfatto analyzed polymorphisms in 35 coding fragments and 153 non-coding fragments scattered across the Drosophila melanogaster X chromosome. He compared these data with D. melanogaster's ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Melissa Lee Phillips

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo