Organellar Proteomics

For nearly 300 years, cell biology has been largely an observational science. Robert Hooke in 1665 saw structures under the microscope that he called cells. Anthony van Leeuwenhoek discovered cellular substructures in 1700, which Robert Brown dubbed 'nuclei' in 1833. Cell biologists have described many other substructures since then, the most prominent among them being the mitochondria, Golgi apparatus, endoplasmic reticulum, and nucleolus.With the advent of molecular biology, cell biologists we

Written byMatthias Mann
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

For nearly 300 years, cell biology has been largely an observational science. Robert Hooke in 1665 saw structures under the microscope that he called cells. Anthony van Leeuwenhoek discovered cellular substructures in 1700, which Robert Brown dubbed 'nuclei' in 1833. Cell biologists have described many other substructures since then, the most prominent among them being the mitochondria, Golgi apparatus, endoplasmic reticulum, and nucleolus.

With the advent of molecular biology, cell biologists were no longer content to observe these structures' shapes; they wanted to identify their molecular components and learn how those components govern organellar function. In so doing, they could fulfill two interrelated goals. The first, identifying a protein's location or cellular home, helps us to understand how particular organelles work. At the same time, because each organelle has unique functions, assigning novel proteins to a specific cellular address offers vital clues to determining those molecules' duties.

For years, as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies