Planarians enter the genomic era

Study in Developmental Cell uses RNAi to probe Schmidtea mediterranea genome

Written bySarah Rothman
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Researchers at the University of Utah have figured out a way to inhibit the function of the planarian genome to create a wide range of phenotypes. Their study, appearing in the May issue of Developmental Cell, is the first of its kind to use large-scale genetics to study the planarian Schmidtea mediterranea, which contains a genome thought to contain insight into adult stem cell pluripotency and tissue regeneration.

The study "changes things because it effectively makes an animal that was not accessible to genetic studies accessible," lead author Alejandro Sánchez Alvarado told The Scientist.

The planarian is capable of regrowth due to the pluripotency of its neoblasts. Even a fraction of the worm is capable of regenerating into an entirely new organism. However, because the organism does not reproduce sexually, it cannot be studied using traditional genetic techniques.

The team circumvented the problem using bacterial-fed RNA interference (RNAi). The group ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH