Prize-Winning PhD

By Karen Hopkin Prize-Winning PhD Aaron Ciechanover didn’t set out to win a Nobel Prize for discovering ubiquitin’s all-important role in protein degradation. He was just trying to graduate. © Dan Porges Aaron Ciechanover could not have predicted that the humble system he was studying would play a central role in everything that happens from embryonic development to adulthood. Of course he was just a graduate student at the time. ̶

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Aaron Ciechanover could not have predicted that the humble system he was studying would play a central role in everything that happens from embryonic development to adulthood. Of course he was just a graduate student at the time. “We didn’t set out to identify ubiquitin. We didn’t know anything about ubiquitin or its function,” says Ciechanover of the discovery that earned him and his mentors the 2004 Nobel Prize in Chemistry. “We were studying intracellular proteolysis and we bumped into it.”

These days, even undergrads know that eukaryotic cells use ubiquitin as a sort of molecular “kiss of death” to mark its damaged proteins for destruction. What’s more, death-by-ubiquitination serves as a key mechanism for controlling tightly regulated cellular processes from cell division to cell death. But in the late 1970s, the notion that cells willfully discard their proteins was not a very popular one. “If you thought protein breakdown ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Karen Hopkin

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences