Prize-Winning PhD

By Karen Hopkin Prize-Winning PhD Aaron Ciechanover didn’t set out to win a Nobel Prize for discovering ubiquitin’s all-important role in protein degradation. He was just trying to graduate. © Dan Porges Aaron Ciechanover could not have predicted that the humble system he was studying would play a central role in everything that happens from embryonic development to adulthood. Of course he was just a graduate student at the time. ̶

Written byKaren Hopkin
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Aaron Ciechanover could not have predicted that the humble system he was studying would play a central role in everything that happens from embryonic development to adulthood. Of course he was just a graduate student at the time. “We didn’t set out to identify ubiquitin. We didn’t know anything about ubiquitin or its function,” says Ciechanover of the discovery that earned him and his mentors the 2004 Nobel Prize in Chemistry. “We were studying intracellular proteolysis and we bumped into it.”

These days, even undergrads know that eukaryotic cells use ubiquitin as a sort of molecular “kiss of death” to mark its damaged proteins for destruction. What’s more, death-by-ubiquitination serves as a key mechanism for controlling tightly regulated cellular processes from cell division to cell death. But in the late 1970s, the notion that cells willfully discard their proteins was not a very popular one. “If you thought protein breakdown ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH