Prokaryotic Pioneer

By Karen Hopkin Prokaryotic Pioneer Always a trailblazer, Susan Gottesman laid the foundation for two new fields in bacterial gene regulation. © Jason Varney | varneyphoto.com As an undergraduate at Radcliffe College—Harvard's allgirl sister institution—in the 1960s, Susan Gottesman earned pocket money working as a technician in Jim Watson's Harvard lab. "I would hear stories of people going to mixers at

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

As an undergraduate at Radcliffe College—Harvard's allgirl sister institution—in the 1960s, Susan Gottesman earned pocket money working as a technician in Jim Watson's Harvard lab. "I would hear stories of people going to mixers at Radcliffe and meeting this strange guy who said he was a professor," she laughs. "But in the lab he was perfectly well behaved." And he encouraged Gottesman to get some hands-on experience by helping a grad student with his experiments. "I didn't know enough science to understand everything that was going on," she says. "But I got to do what I wanted, which was playing in a lab and learning through osmosis."

And through the years, Gottesman has certainly built on everything she's absorbed. As an independent investigator at the National Institutes of Health (NIH)—where she set up shop in 1976—Gottesman made major contributions in the field of prokaryotic gene regulation, uncovering key roles played ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Karen Hopkin

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide