Protein Purification I: Liquid Chromatography

From individual academic laboratories to Big Pharma manufacturing plants, small- and large-scale protein purification usually requires some type of liquid chromatography. Most purification techniques have been in use for decades, but the development of new resins has improved the time-tested methods that exploit proteins' physical and chemical properties to effect separations. This profile examines four techniques—gel filtration (GF), ion exchange (IEX), hydroxyapatite (HAP), and hydrophob

Written byAileen Constans
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

For the novice protein purifier, finding a place to start might seem overwhelming, but fortunately the process can be approached systematically. Andrew Mitchell, technical consultant for Amersham Biosciences in Piscataway, NJ, explains that protein purification by liquid chromatography generally takes place in three phases: a capture step, in which the desired protein is separated from other cellular components such as DNA and RNA; an intermediate step, in which proteins are isolated from contaminants similar in size or other physical/chemical properties; and a polishing step, in which the sample is readied for use. Each purification stage has certain chromatography techniques and bead sizes that are best suited to it.

The initial capture step typically involves protein isolation from a crude cell lysate and requires a resin with a high capacity and high flow rate. "Fast flow" resins with a large bead size and large bead size range (the range can vary ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform