Protein Solution Structure in Three Days or Less?

More efficient protein structure determination is a major goal of the US structural genomics projects.

| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

More efficient protein structure determination is a major goal of the US structural genomics projects. X-ray crystallography shines in its ability to determine structures quickly from data gathered at synchrotron beam lines, but only a fraction of proteins that can be produced in soluble form crystallize to yield X-ray structures. Many smaller proteins that fail in crystallization trials can yield solution structures by nuclear magnetic resonance (NMR), however.

NMR structures are fundamentally different from their X-ray-derived counterparts. For one thing, the proteins are in solution rather than locked in crystals; the resulting structures are thus more reflective of the molecules' natural (in vivo) state. Moreover, NMR provides something X-ray structures cannot: valuable information about protein dynamics, chemical properties, and ligand binding.

But NMR has problems, too. The process is computationally intensive, and bottlenecks in data collection and analysis mean structure determination can take weeks or even months. Now we and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • John Markley

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio