Purely RNA

Fundamental laboratory techniques such as Northern blot analysis, RNA protection assays, in situ hybridization, and reverse transcriptase-PCR (RT-PCR) require high-quality, highly purified RNA samples. Preparing such samples is often laborious at best, because RNAses-both stable and omnipresent-can easily degrade the samples. In the past, RNA work was often left to dedicated labs, with dedicated work areas, equipment, and some very meticulous workers. Fortunately, the technology continues to evo

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

The first step to RNA recovery is cell lysis, which depends on the denaturation of the proteins that comprise the cellular membrane. In 1979 John Chirgwin and colleagues devised a method for disrupting cellular membranes without denaturing nucleic acids. They homogenized tissue in guanidinium thiocyanate, a protein denaturant, and b-mercaptoethanol, a reducing agent.1 These scientists then isolated and purified the cellular RNA through either ethanol extraction or ultracentrifugation across a cesium chloride gradient. This technique was the first to allow researchers to isolate RNA specifically, but it had a number of drawbacks-it was lengthy, inefficient, hazardous, and inconsistent.

In 1987 Piotr Chomczynski and Nicoletta Sacchi improved on this method by combining the extraction procedures into one step through the use of a mixture of guanidinium thiocyanate and phenol-chloroform.2 This modification had at least two tangible benefits. First, it reduced the length of the RNA-isolation step, allowing researchers to increase the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Deborah Stull

    This person does not yet have a bio.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer