Quantifying Intermolecular Interactions

Atomic force microscopes can generate a highly detailed topological map of a specimen by moving a stylus coupled to a cantilever over the sample surface, using a laser to measure deflection of the cantilever.1 Now, researchers at the University of California at Berkeley have adopted this principle to create a system capable of quantifying intermolecular interactions, with potential applications for both clinicians and high-throughput proteomics researchers.2 In a research article published in

Written byJeffrey Perkel
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

In a research article published in the September issue of Nature Biotechnology, Arun Majumdar, professor of mechanical engineering at Berkeley, and coauthors at Oak Ridge National Laboratory in Oak Ridge, Tenn., the University of Southern California in Los Angeles, and the Lawrence Berkeley National Laboratory at UC-Berkeley, describe a system to quantify prostate-specific antigen (PSA), a prostate cancer protein marker.

The PSA test uses a cantilever 200 mm long and 0.5 mm wide, one side of which is coated with gold and conjugated to an antibody that recognizes PSA. Majumdar and his colleagues incubated the cantilever, which is a diving board-like device, with a simulated human serum that contained high concentrations of human plasminogen, human serum albumin, or bovine serum albumin, with varying concentrations of PSA. When the antibodies on the cantilever captured the PSA in the solution, the device bent a few nanometers in height. A laser beam aimed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH