Rat dad's diet affects pups

A father's high-fat diet may increase his offspring's risk of diabetes.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A father's diet can directly affect his daughter's health, according to a study in rats published today (October 20) in Nature.

For the first time, researchers have demonstrated a purported epigenetic link between a father's high-fat diet and an increased risk of disease in his offspring -- in this case, diabetes. Numerous papers have shown that aspects of a mother's health, including her weight, can have a significant impact on her offspring, but few have shown the same effect on the paternal side.

"It really does bring the father into play," said Michael Skinner, a researcher at the Center for Reproductive Biology at Washington State University, who was not involved in the study.

"This outcome suggests that our predisposition toward disease can be affected by what our parents or grandparents consumed during key points in their development," Tracy Bale of the University of Pennsylvania said in an email. Bale, who ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Megan Scudellari

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio