Replication coupled to recombination

Blocking meiotic DNA replication in budding yeast prevents recombination initiation. This could indicate a direct coupling of the two processes, or the presence of a checkpoint system that detects incomplete replication and shuts down the formation of double-strand breaks (DSBs). In the 27 October Science, Borde et al. report that budding yeast cells defective for the replication checkpoint can progress through meiosis I in the absence of replication, but DSBs are still not formed (Science 2000,

Written byWilliam Wells
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Blocking meiotic DNA replication in budding yeast prevents recombination initiation. This could indicate a direct coupling of the two processes, or the presence of a checkpoint system that detects incomplete replication and shuts down the formation of double-strand breaks (DSBs). In the 27 October Science, Borde et al. report that budding yeast cells defective for the replication checkpoint can progress through meiosis I in the absence of replication, but DSBs are still not formed (Science 2000, 290:809-812). Furthermore, delaying replication in specific parts of the genome (by deleting origins of replication or creating translocations into telomeric regions) delays DSB formation only in those regions. Thus DSB formation is controlled locally, whereas the subsequent recombination and repair processes are timed and controlled on a cell-wide basis. The 1.5 to 2 hour delay between replication and DSB formation may reflect the time needed to assemble protein complexes or to establish interhomolog contacts.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research