Researchers Are Getting Specific About Protein Kinase Inhibitors

Data derived from the Science Watch/Hot Papers database and the Web of Science (ISI, Philadelphia) show that Hot Papers are cited 50 to 100 times more often than the average paper of the same type and age. S.P. Davies et al., "Specificity and mechanism of action of some commonly used protein kinase inhibitors," Biochemical Journal, 351:95-105, Oct. 1, 2000. (Cited in 191 papers) In signal transduction research, protein kinase inhibitors help scientists tease out the vagaries of complex signa

Written byJeffrey Perkel
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

In signal transduction research, protein kinase inhibitors help scientists tease out the vagaries of complex signaling pathways, but anecdotal evidence suggests that they are flawed tools at best, lacking the specificity necessary to draw conclusions from their use. Though experts agree that inhibitors have a legitimate place in science as screening tools, can researchers conduct good science on the carbon backbones of such agents?

Philip Cohen decided to find out. Cohen, Royal Society research professor and director of the Medical Research Council's protein phosphorylation unit, University of Dundee, Scotland, and colleagues published a study that finally quantified the specificity of a battery of commercially available, allegedly selective inhibitors.1 For the most part, Cohen found that the rumor of their precision was greatly exaggerated. "It became clear that many of them were absolutely hopeless," says Cohen. This study, which became a Hot Paper, lays out guidelines for validating kinase inhibitor data.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies