Researchers Are Getting Specific About Protein Kinase Inhibitors

Data derived from the Science Watch/Hot Papers database and the Web of Science (ISI, Philadelphia) show that Hot Papers are cited 50 to 100 times more often than the average paper of the same type and age. S.P. Davies et al., "Specificity and mechanism of action of some commonly used protein kinase inhibitors," Biochemical Journal, 351:95-105, Oct. 1, 2000. (Cited in 191 papers) In signal transduction research, protein kinase inhibitors help scientists tease out the vagaries of complex signa

Written byJeffrey Perkel
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

In signal transduction research, protein kinase inhibitors help scientists tease out the vagaries of complex signaling pathways, but anecdotal evidence suggests that they are flawed tools at best, lacking the specificity necessary to draw conclusions from their use. Though experts agree that inhibitors have a legitimate place in science as screening tools, can researchers conduct good science on the carbon backbones of such agents?

Philip Cohen decided to find out. Cohen, Royal Society research professor and director of the Medical Research Council's protein phosphorylation unit, University of Dundee, Scotland, and colleagues published a study that finally quantified the specificity of a battery of commercially available, allegedly selective inhibitors.1 For the most part, Cohen found that the rumor of their precision was greatly exaggerated. "It became clear that many of them were absolutely hopeless," says Cohen. This study, which became a Hot Paper, lays out guidelines for validating kinase inhibitor data.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH