Seeing traits, close-up

Researchers dissect a quantitative trait to the single nucleotide level

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

For the first time, researchers have discovered the molecular basis of a quantitative trait at the level of individual nucleotides. The report, appearing in the December issue of Nature Genetics, reveals that even the tiniest changes among a few genes can profoundly affect traits. The authors also describe an approach that can be used to characterize any trait in yeast -- and, potentially, higher organisms, they suggest.

In the current study, Adam Deutschbauer, now a postdoctoral fellow at the University of California, Berkeley, and Ronald Davis at Stanford University in California, focused on characterizing genes responsible for yeast sporulation efficiency, a measure of the rate at which yeast undergo asexual reproduction and develop spores. Their approach revealed three genes responsible for the trait, two of which had never before been implicated in sporulation. Furthermore, single-nucleotide changes within genes or a regulatory region dramatically influenced the rate of yeast sporulation, suggesting ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Nicole Johnston

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution