Self-Healing Electronic Skin

A new type of pressure-sensitive self-healing plastic could be used as synthetic skin to allow people with prosthetic limbs to feel.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Flickr, MilitaryHealthResearchers at Stanford University in California have created a flexible, pressure-sensitive, and self-healing polymer that could find use as an “electronic skin” for robots and biomimetic prostheses, according to a report out this week (November 11) in Nature Nanotechnology.

Materials scientists have been developing “epidermal electronics” for the past 10 years. They have produced circuits thin and flexible enough to be attached to skin, and sensitive enough to record heartbeats and brain activity, for example. At the same time, chemists have been working on self-healing polymers—plastics that can be activated by heat, light, or gentle contact to repair themselves after breakage.

Now, a team at Stanford has combined these two properties by incorporating nickel atoms into a self-healing polymer. The resulting material is sensitive to applied forces such as pressure or twisting because these forces alter the distance between the nickel atoms, which affects how easy it is for electrons to jump between them—and thus changes the electric resistance of the material.

To show ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis