Sequence of a single-celled vulture

Thermoplasma acidophilum is an archaeon that lives off the carcasses of organisms that perish in its hot, acidic home. In the 28 September Nature, Ruepp et al. find that the microbe has scavenged genes from its neighbors in order to survive (Nature 2000, 407:508-513). T. acidophilum was originally suspected to be an ancestor of the eukaryotes, as it has complexes involved in protein folding, degradation and turnover that look like simplified versions of the corresponding eukaryotic complexes. Bu

Written byWilliam Wells
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Thermoplasma acidophilum is an archaeon that lives off the carcasses of organisms that perish in its hot, acidic home. In the 28 September Nature, Ruepp et al. find that the microbe has scavenged genes from its neighbors in order to survive (Nature 2000, 407:508-513). T. acidophilum was originally suspected to be an ancestor of the eukaryotes, as it has complexes involved in protein folding, degradation and turnover that look like simplified versions of the corresponding eukaryotic complexes. But the 1.56 Mbp genome sequence clearly identifies T. acidophilum as an archaeon. Although the microbe's housekeeping genes reflect this phylogenetic origin, many of the genes related to its specialized lifestyle have come from other organisms by lateral transfer. This includes a full 17% of identified open reading frames that have their closest relatives in Sulfolobus solfataricus, a bacterium that is unrelated genetically but lives in the same extreme environments. Gene transfer may ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery