Silencing paradox resolved

RNA polymerase in Arabidopsis does double duty in RNA- and DNA-mediated silencing

Written byTrevor Stokes
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The paradoxical involvement of RNA-mediated gene silencing in the maintenance of some DNA silencing is bridged in Arabidopsis plants by an RNA polymerase that acts as a liaison between both pathways, UK researchers report in the February 3 issue of Science.

Alan Herr, from the John Innes Centre, Norwich, and colleagues from there and elsewhere show that an RNA polymerase connects RNA and DNA silencing pathways. They found that mutants in RNA polymerase IV (Pol IV, also called RPD1), part of a new clade of polymerases in plants, were defective in both pathways.

"The finding of a new silencing-specific RNA polymerase is a surprising twist in the evolution of RNA polymerases," Herr wrote The Scientist in an E-mail. "Even though Pol IV is plant specific, the function of Pol IV may be performed by another RNA polymerase in other programs. Silencing of a locus does not mean that it is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH