Snip-SNPs in the worm genome

SNPs (single nucleotide polymorphisms) are valuable markers for mapping mutations and human disease-related genes. In the June issue of Nature Genetics, Wicks et al. describe a SNP-based strategy for rapid mapping in the C. elegans genome (Nature Genetics 2001, 28:160-164). They sequenced the entire genome of the CB4856 Hawaiian worm isolate and compared it with the standard laboratory wild type strain (Bristol N2). This alignment identified 6,222 potential polymorphisms, more than half of which

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

SNPs (single nucleotide polymorphisms) are valuable markers for mapping mutations and human disease-related genes. In the June issue of Nature Genetics, Wicks et al. describe a SNP-based strategy for rapid mapping in the C. elegans genome (Nature Genetics 2001, 28:160-164). They sequenced the entire genome of the CB4856 Hawaiian worm isolate and compared it with the standard laboratory wild type strain (Bristol N2). This alignment identified 6,222 potential polymorphisms, more than half of which modify restriction enzyme sites (referred to as 'snip-SNPs'). Such a high-density map of snip-SNPs (about one every 200 kb) allows for rapid mapping of gene mutations using RFLP analysis. To demonstrate the efficiency of such a mapping approach, Wicks et al. used their snip-SNP map and bulked segregant analysis to localize the dyf-5 gene. They claim that the successful mapping could be achieved with 36 PCR reactions within 12 hours of isolating F2 animals from a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel