Courtesy of Martin Chaplin
Water molecules cluster to form hydrogen-bonded bicyclo-octamers (H2O)8 (top left) that can link together into larger structures (top right). Ideally they form 280-member icosahedral clusters, (H2O)280, (below), shown looking down the two-fold, three-fold, and five-fold axes of symmetry. Only the oxygen atoms of the constituent water molecules are shown (except at top left).
Researchers are beginning to glimpse water's secret social life. Evidence is mounting that water in living systems naturally gathers into frameworks of 14, 17, 21, 196, 280, or more molecules. Some say that the clusters' apparent existence necessitates redesigning simulation models of life processes. And support is growing behind the idea that these intricate structures play key roles in operations ranging from molecular binding to turning on and off basic cell processes.
Such huge clusters certainly exist under some conditions, according to Richard Saykally, professor of chemistry at University of California, Berkeley. Saykally ...