Supercharging proteins

David Liu's group supercharged green fluorescent protein (left) with a super positive (middle) and super negative (right) charge. Credit: David Liu / Reprinted with permission from American Chemical Society,J Am Chem Soc, 129:10110–2, 2007." />David Liu's group supercharged green fluorescent protein (left) with a super positive (middle) and super negative (right) charge. Credit: David Liu / Reprinted with permission from American Chemical Society,J Am Chem Soc, 129:

kerry grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

One day in March of 2006, postdoc Mike Lawrence walked into David Liu's laboratory at Harvard University in a slightly anxious mood. He'd been in the lab for nine months with little to show in terms of good results, and he was hoping this day might turn things around. He had taken on a bold new project with his labmate, Kevin Phillips, to test whether changing the charge of surface residues on a protein could reduce its propensity for aggregating.

Preventing aggregation could be appealing for a number of reasons: understanding neurodegenerative diseases, extending the shelf life of protein therapeutics, and producing better-behaving proteins for lab work such as crystallography. In all of these examples, a protein's propensity for aggregating can wreak havoc on attempts to control its behavior.

Instead of taking the route most scientists might take to avoid aggregation – systematically changing just one amino acid at a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo