Courtesy of Oak Ridge National Laboratory
The genome has been read. The proteome has been opened. As a result, research problems have gotten more difficult. Fortunately, access to the tools that help investigators rise to those new challenges is quickly becoming easier.
How much easier? Ask Charles Taylor, a biomechanical engineer at Stanford University. To model the flow of blood in human arteries, Taylor needs to solve as many as 10 million nonlinear partial differential equations at once, "and because the equations are nonlinear, we need to do a few subiterations of each," Taylor says. "That definitely requires supercomputing."
Taylor is creating a digital tool that will allow physicians to translate MRI and CT scans into blueprints of each patient's unique vascular architecture, enabling surgeons to plan and then simulate various treatments so they can determine which will be most effective for any given individual. Once, Taylor would have had ...