The Gates of Immortality

By Yves Barral The Gates of Immortality Did biology evolve a way to protect offspring from the ravages of aging by creating a physical barrier that separates the parent from its young? Dr. Stanley Flegler, Visuals Unlimited he idea that every organism must age was a concept that surprised many biologists. For a long time, aging was thought to be a process occurring only in multicellular organisms. The reason for this arguably odd presumption was that we knew so

Written byYves Barral
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

he idea that every organism must age was a concept that surprised many biologists. For a long time, aging was thought to be a process occurring only in multicellular organisms. The reason for this arguably odd presumption was that we knew somatic cells—such as those that comprise the kidney, brain, and liver—lost their functionality over time: they aged. Furthermore, those cells divided only a limited number of times, around 50, after which they reached the so-called Hayflick limit, stopped proliferating, and died.

Unicellular organisms were thought to be capable of dividing forever, as long as conditions allowed: one generation begetting the next down through time—a sort of immortality. If unicellular organisms were like somatic cells, then they would age as they divide, reach the Hayflick limit, and die.

Slow Sensing Ages Stem Cells

Divide, Conquer

Shock and Age by Rick Morimoto

Separate and Unequal

Should Evolution Evolve

It wasn’t until ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies