The Gates of Immortality

By Yves Barral The Gates of Immortality Did biology evolve a way to protect offspring from the ravages of aging by creating a physical barrier that separates the parent from its young? Dr. Stanley Flegler, Visuals Unlimited he idea that every organism must age was a concept that surprised many biologists. For a long time, aging was thought to be a process occurring only in multicellular organisms. The reason for this arguably odd presumption was that we knew so

| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

he idea that every organism must age was a concept that surprised many biologists. For a long time, aging was thought to be a process occurring only in multicellular organisms. The reason for this arguably odd presumption was that we knew somatic cells—such as those that comprise the kidney, brain, and liver—lost their functionality over time: they aged. Furthermore, those cells divided only a limited number of times, around 50, after which they reached the so-called Hayflick limit, stopped proliferating, and died.

Unicellular organisms were thought to be capable of dividing forever, as long as conditions allowed: one generation begetting the next down through time—a sort of immortality. If unicellular organisms were like somatic cells, then they would age as they divide, reach the Hayflick limit, and die.

Slow Sensing Ages Stem Cells

Divide, Conquer

Shock and Age by Rick Morimoto

Separate and Unequal

Should Evolution Evolve

It wasn’t until ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Yves Barral

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences