The Great Escape

By Richard P. Grant The Great Escape 3D4Medical / Photo Researchers, Inc. The paper L.A. Knodler et al., “Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia.” PNAS, 107:17733-38, 2010. Free F1000 Evaluation The finding When the Salmonella bacterium infects eukaryotic cells, it becomes encased in membrane-bound vacuoles. How it escapes from these vacuoles and infects other cells was a mystery until now

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The paper

L.A. Knodler et al., “Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia.” PNAS, 107:17733-38, 2010. Free F1000 Evaluation

The finding

When the Salmonella bacterium infects eukaryotic cells, it becomes encased in membrane-bound vacuoles. How it escapes from these vacuoles and infects other cells was a mystery until now. Olivia Steele-Mortimer and colleagues at NIH’s National Institute of Allergy and Infectious Diseases in Hamilton, Montana, found that these bacteria don’t all behave the same way, even when infecting the same cell—and that very few actually escape the vacuoles at all.

The cytosol

First author Leigh Knodler noticed “balls of cells” sitting on top of the monolayer of cultured Salmonella-infected gut epithelial cells in electron micrographs. These epithelial cells had been extruded from the monolayer and were laden with bacteria swimming free in the cytosol. This bacterial population, however, divided almost five times as fast as vacuole-dwelling-bacteria.

The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Richard P. Grant

    This person does not yet have a bio.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo