Petunia’s Waxy Cuticle Regulates the Plant’s Sweet Smell

The thicker the flower petals’ cuticle, the more fragrance compounds the plant releases, according to a recent study.

Written byAshley Yeager
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, IVAN MURAUYOU

The paper
P. Liao et al., “Cuticle thickness affects dynamics of volatile emission from petunia flowers,” Nat Chem Biol, doi:10.1038/s41589-020-00670-w, 2020.

Many flowers emit sweet scents to lure pollinators. Those fragrant molecules can, however, cause damage if they begin to collect in the flowers’ cells.

To escape into the air, a petunia’s scent molecules, called volatile organic compounds (VOCs), have to travel through their cells’ cytoplasm, cross an inner membrane and then the cell wall, and finally move through a waxy cuticle. Scientists long thought that diffusion drove the release of the molecules, but in 2015, computer simulations revealed that VOCs can’t diffuse out of flower cells quickly enough to prevent internal damage to the plant.

In follow-up experiments to find out how the fragrance molecules might escape the plants, Purdue University biochemist Natalia Dudareva and colleagues found that when the flowers opened and became pungent, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile

Published In

February 2021

Restoring Reefs

New approaches could accelerate development of outplanted corals

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies