Why Paternal Mitochondria Aren’t Passed On to Offspring

Researchers identify a C. elegans gene that leads the organelles to self-destruct in sperm following fertilization of an egg.

Written byTanya Lewis
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Caenorhabditis elegansWIKIMEDIA, NIHResearchers have uncovered a clue as to why a mother’s mitochondria are passed on to her offspring while the father’s are not. Studying sperm cells from the roundworm Caenorhabditis elegans, researchers at the University of Colorado, Boulder, and colleagues found that a gene called cps-6 encodes a mitochondrial endonuclease that degrades paternal mitochondrial DNA (mtDNA) following fertilization of an egg. Delaying this process can be fatal to the embryo, the team reported yesterday (June 23) in Science.

The research “comes closest to elucidating a key development process that has perplexed us for a long time,” geneticist Justin St. John of the Hudson Institute of Medical Research in Australia, who was not involved in the research, told The New York Times.

Qinghua Zhou of the University of Colorado and colleagues examined the C. elegans cells using electron microscopy and tomography, finding that the paternal mitochondria started to self-destruct even before they were engulfed by autophagosomes. Using RNA analysis, the researchers identified cps-6 as an important part of this process. When this gene was removed, the paternal mitochondria persisted, resulting in increased embryo mortality.

“This provides evidence that persistence of paternal mitochondria compromises animal development and may be the impetus for maternal inheritance of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies