Why Paternal Mitochondria Aren’t Passed On to Offspring

Researchers identify a C. elegans gene that leads the organelles to self-destruct in sperm following fertilization of an egg.

Written byTanya Lewis
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Caenorhabditis elegansWIKIMEDIA, NIHResearchers have uncovered a clue as to why a mother’s mitochondria are passed on to her offspring while the father’s are not. Studying sperm cells from the roundworm Caenorhabditis elegans, researchers at the University of Colorado, Boulder, and colleagues found that a gene called cps-6 encodes a mitochondrial endonuclease that degrades paternal mitochondrial DNA (mtDNA) following fertilization of an egg. Delaying this process can be fatal to the embryo, the team reported yesterday (June 23) in Science.

The research “comes closest to elucidating a key development process that has perplexed us for a long time,” geneticist Justin St. John of the Hudson Institute of Medical Research in Australia, who was not involved in the research, told The New York Times.

Qinghua Zhou of the University of Colorado and colleagues examined the C. elegans cells using electron microscopy and tomography, finding that the paternal mitochondria started to self-destruct even before they were engulfed by autophagosomes. Using RNA analysis, the researchers identified cps-6 as an important part of this process. When this gene was removed, the paternal mitochondria persisted, resulting in increased embryo mortality.

“This provides evidence that persistence of paternal mitochondria compromises animal development and may be the impetus for maternal inheritance of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH