Modeling with model organisms Eye of Science / Photo Researchers, Inc Fruit fly genetics may help us understand how organisms can - or can't - adapt to climate change. By Andrea Gawrylewski Related Articles: 1 Hoffman's team reported that on the East Coast of Australia, the classical latitudinal genetic clines of Drosophila have shifted over the past 20 years an equivalent of 4 degrees latitude (some 400 km), which means that genetic clines are now found in f
Fruit fly genetics may help us understand how organisms can - or can't - adapt to climate change.
By Andrea Gawrylewski
Related Articles:
1 Hoffman's team reported that on the East Coast of Australia, the classical latitudinal genetic clines of Drosophila have shifted over the past 20 years an equivalent of 4 degrees latitude (some 400 km), which means that genetic clines are now found in flies 400 kilometers away from where they were 20 years ago.
Can organisms that change as the climate does have the genetic wherewithal to keep up with rising temperatures?
The researchers focused their analysis on the alcohol dehydrogenase (Adh) locus, since the Adh gene has been correlated with natural variation due to temperature, rainfall, and humidity changes. In addition to tracking the gene's presence in different populations, "we're basically trying to...
Interested in reading more?
Become a Member of
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!