Translational Disconnect

Bioscience innovation is in crisis. What can we do about it?

Written byAlan Walton and Frederick Frank
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

How can the discovery of novel pharmaceuticals for diseases, old and new, be better, faster and cheaper? The pat answer is, of course, research. But, given that more than 80% of all scientists who have ever lived are alive today, why are there only 10-20 new drugs approved each year? Why does it cost $1 billion and take 15 years to get each one to market? And why are there fewer and fewer global pharmaceutical companies charging us more and more for our prescription drugs?

There are two reasons, one of which - the sheer complexity of biology - we can do nothing about. The other is more tractable and is our focus here - the cost efficiency of drug production. It is poor and getting worse, but we believe that it could be turned around. For this to happen, we have to understand the barriers to efficiency, and how ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH