Transvascular siRNA Delivery

The tight network of endothelial cells of brain capillaries have, until now, kept therapeutic molecules, such as small interfering RNAs (siRNAs), from crossing from the blood into the brain. Such molecules could potentially silence targeted genes expressed in neurologic disorders. N. Manjunath Swamy from Harvard University Medical School and colleagues synthesized a peptide derived from rabies virus glycoprotein (RVG) and showed that the 29-amino-acid peptide bound specifically to acety

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The tight network of endothelial cells of brain capillaries have, until now, kept therapeutic molecules, such as small interfering RNAs (siRNAs), from crossing from the blood into the brain. Such molecules could potentially silence targeted genes expressed in neurologic disorders. N. Manjunath Swamy from Harvard University Medical School and colleagues synthesized a peptide derived from rabies virus glycoprotein (RVG) and showed that the 29-amino-acid peptide bound specifically to acetylcholine receptors expressed in the brain.1 When they gave the RVG peptide (complexed with an antiviral) intravenously to mice, they silenced specific genes in the brain that were involved in an otherwise fatal form of viral encephalitis. Repeated administration of the peptide-siRNA complex did not trigger inflammatory cytokines or antipeptide antibodies.

The findings "pave the way for the use of siRNAs as a therapeutic intervention for acquired neurologic disorders, especially those caused by pathogenic viruses," writes Mark Kay, a member of the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series