Unraveling Chromatin's Secrets

Chromatin fibers are made up of eukaryotic DNA found in the nucleus. Once considered a dull, static entity, a passive scaffold that supports many interesting cellular processes, chromatin structure is now known to be dynamic. It changes in an orchestrated way, responding to the interchange and modification of proteins that associate with and comprise it. At the heart of chromatin's design is the nucleosome, a complex of DNA wound around an octamer containing two molecules each of histone protein

Written byBarbara Cunningham
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Chromatin's structure plays an important regulatory role in DNA template-dependent processes including transcription, replication, recombination, repair, segregation, chromosomal stability, cell cycle progression, and epigenetic silencing.1-3 Many factors can induce remodeling (changes in chromatin structure) including histone modification and the binding of numerous non-histone proteins that are loosely termed the transcriptional apparatus.

Histones contain two distinct domains. The proteins' amino-terminal tails, which protrude from the nucleosome core, are unstructured and highly positively charged owing to the presence of several lysine and arginine residues. Conversely, the histone core domain is globular and responsible for the histone:histone interactions involved in nucleosome formation.2 A variety of well-conserved post-translational modifications occur in the histone tail domain, including acetylation, phosphorylation, methylation, ribosylation, ubiquitinylation, and glycosylation; the most well-studied of these is the acetylation of histone tail domains on specific lysine residues.1-5 The conventional wisdom holds that these modifications alter the strength of the interaction between DNA ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform