In a remarkable display of cooperation, specialized fungi eject spores sitting atop their fruiting bodies at high speeds in rapid succession to generate a miniature wind current that carries their progeny 20 times farther than a single spore could travel on its own.
Spore puffs from Sclerotinia sclerotiorum
Image: M. Roper
Combining mathematical theory with high speed video, a team led by applied mathematician linkurl:Marcus Roper; of the University of California, Berkeley, watched as Sclerotinia sclerotiorum -- a pathogenic fungus that infects the flowers of crop plants -- performed this impressive reproductive feat, which involves the ejection of fungal spores from some 100,000 separate sacs, known as asci. The team also demonstrated how the cooperating spores can evade obstacles by riding the air current they create. Their results are reported in this week's Proceedings of the National Academy of Sciences (PNAS). The explosion seems to be triggered by a...
Spores eject from the top of a fruiting body of the fungus Sclerotinia sclerotiorum, slowed down to one fifth of its natural speed, to show the structure of the jet of air created by the spores.
Video courtesy of Marcus Roper
A high speed film showing the same species of fungus ejecting its spores. The left panel shows the spores illuminated with a ~1mm thick laser light sheet. The right panel displays the speed of the spores, computed using a technique called particle image velocimetry (PIV).
Video courtesy of Mahesh Bandi, Agnese Seminara and Marcus Roper
The ejection of spores from a related fungus, Ascobolus furfuraceus. The spores are black specks, which disappear when the spores are ejected.
Video courtesy of Marcus Roper
M. Roper, et al., "Dispersal of fungal spores on a cooperatively generated wind," PNAS,, 2010.

Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?