During most of the 1990s, a linguistic chasm divided the worlds of flies, worms, mice, and other model organisms. People in one world remained largely ignorant about related genes and proteins being studied in the others, in part because each group stored data using its own peculiar vocabulary. Even within a single organism, a search for genes involved in "translation" might not pull up those described using the term "protein synthesis," and vice versa.
Michael Ashburner, a fly geneticist at Cambridge University, thought what the genetics field needed was a universal language to bring the data together. "It seemed to me self-evident that if all model organism databases used common language for describing gene products, then we'd be able to have some unification," he says.
His idea finally took hold, and in 1998 resulted in what is now the most widely used structured language, or ontology, to describe the biological ...