A Look at Drosophila Pattern Formation

Researchers interested in gene expression studies adopt one of two approaches. They can either examine the expression of a given gene in a population of cells in aggregate, or they can study the gene on a cell-by-cell basis in situ. The advantage of the former approach is its simplicity: It is generally easy to prepare RNA or protein from a given tissue sample and to probe it for the gene or protein of interest. But there are several disadvantages associated with the population approach. First o

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

In situ macromolecular analyses typically have five steps. The tissues must be fixed, permeabilized, and probed for the molecule of interest. RNA species can be detected using tagged DNA or RNA probes. Protein species, in contrast, are typically detected using a tagged antibody. The samples are then mounted onto slides and analyzed microscopically. In situ methods have advanced through improvements in microscopy technologies, such as confocal and deconvolution microscopy. Traditionally, microscopic analysis of thick tissues could only be accomplished using sectioning of paraffin-embedded samples. However, confocal and deconvolution techniques allow the user to make optical sections through a thick sample, improving the resolution and removing fluorescent background from sections above and below the focal plane without introducing the artifacts that can occur with manual tissue sectioning. These techniques also allow the user to reconstruct the original three-dimensional image, so that staining can be viewed in the context of the entire ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jeffrey Perkel

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo