A Nuclear Model of Gene Regulation

and many since have sought to explain correlations between a gene's physical location and its activity.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Courtesy of Jason Brickner

Scientists have noted chromatin's nonrandom distribution in the nucleus for more than a century,1 and many since have sought to explain correlations between a gene's physical location and its activity. Recent studies explore the role the nuclear envelope and its associated structures may play in regulating transcription, and what they find runs counter to some common conceptions.

Heterochromatin is often found in close proximity to the nuclear envelope, with telomeres tethered to the nuclear periphery interacting with the nuclear pore. Placing genes near telomeres or artificially tethering them to the pores results in silence. But actively transcribed genes have been seen to preferentially associate with the components of the nuclear pore complex (NPC) as well. Some researchers even argue that pre-assembled transcriptional machinery resides at these nuclear exits, and that genes are activated through contact with them – a phenomenon dubbed "reverse recruitment."2

"I think the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Josh Roberts

    This person does not yet have a bio.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo